Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38400417

RESUMO

Environmental noise control is a major health and social issue. Numerous environmental policies require local authorities to draw up noise maps to establish an inventory of the noise environment and then propose action plans to improve its quality. In general, these maps are produced using numerical simulations, which may not be sufficiently representative, for example, concerning the temporal dynamics of noise levels. Acoustic sensor measurements are also insufficient in terms of spatial coverage. More recently, an alternative approach has been proposed, consisting of using citizens as data producers by using smartphones as tools of geo-localized acoustic measurement. However, a lack of calibration of smartphones can generate a significant bias in the results obtained. Against the classical metrological principle that would aim to calibrate any sensor beforehand for physical measurement, some have proposed mass calibration procedures called "blind calibration". The method is based on the crossing of sensors in the same area at the same time, which are therefore supposed to observe the same phenomenon (i.e., measure the same value). The multiple crossings of a large number of sensors at the scale of a territory and the analysis of the relationships between sensors allow for the calibration of the set of sensors. In this article, we propose to adapt a blind calibration method to data from the NoiseCapture smartphone application. The method's behavior is then tested on NoiseCapture datasets for which information on the calibration values of some smartphones is already available.

2.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433428

RESUMO

Noise has become a very notable source of pollution with major impacts on health, especially in urban areas. To reduce these impacts, proper evaluation of noise is very important, for example by using noise mapping tools. The Noise-Planet project seeks to develop such tools in an open science platform, with a key open-source smartphone tool "NoiseCapture" that allows users to measure and share the noise environment as an alternative to classical methods, such as simulation tools and noise observatories, which have limitations. As an alternative solution, smartphones can be used to create a low-cost network of sensors to collect the necessary data to generate a noise map. Nevertheless, this data may suffer from problems, such as a lack of calibration or a bad location, which lowers its quality. Therefore, quality control is very crucial to enhance the data analysis and the relevance of the noise maps. Most quality control methods require a reference database to train the models. In the context of NC, this reference data can be produced during specifically organized events (NC party), during which contributors are specifically trained to collect measurements. Nevertheless, these data are not sufficient in number to create a big enough reference database, and it is still necessary to complete them. Other communities around the world use NC, and one may want to integrate the data they collected into the learning database. In order to achieve this, one must detect these data within the mass of available data. As these events are generally characterized by a higher density of measurements in space and time, in this paper we propose to apply a classical clustering method, called DBSCAN, to identify them in the NC database. We first tested this method on the existing NC party, then applied it on a global scale. Depending on the DBSCAN parameters, many clusters are thus detected, with different typologies.


Assuntos
Crowdsourcing , Smartphone , Análise por Conglomerados , Bases de Dados Factuais , Análise de Dados
3.
Artigo em Inglês | MEDLINE | ID: mdl-34360073

RESUMO

Noise is a major source of pollution with a strong impact on health. Noise assessment is therefore a very important issue to reduce its impact on humans. To overcome the limitations of the classical method of noise assessment (such as simulation tools or noise observatories), alternative approaches have been developed, among which is collaborative noise measurement via a smartphone. Following this approach, the NoiseCapture application was proposed, in an open science framework, providing free access to a considerable amount of information and offering interesting perspectives of spatial and temporal noise analysis for the scientific community. After more than 3 years of operation, the amount of collected data is considerable. Its exploitation for a sound environment analysis, however, requires one to consider the intrinsic limits of each collected information, defined, for example, by the very nature of the data, the measurement protocol, the technical performance of the smartphone, the absence of calibration, the presence of anomalies in the collected data, etc. The purpose of this article is thus to provide enough information, in terms of quality, consistency, and completeness of the data, so that everyone can exploit the database, in full control.


Assuntos
Crowdsourcing , Smartphone , Calibragem , Humanos , Ruído/efeitos adversos , Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...